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Twinning as a Fundamental Process in 
Polymer Crystal Orientation 
M. PIETRALLA 
Abteilung fur Experimentelle Physik UniversitAt Ulm, Albert-Einstein-Allee I 1, 0-7900 Ulm, 
Germany 

During a deformation experiment the chain molecules are orientated. The mechanisms of chains orientating 
producing the crystal orientation differ from orientating of chains within the amorphous phase. Some of them 
may be active. Twinning processes changing the c-axis direction within the crystallites are possible. They 
rotate the crystal lattice and change the shape of crystals. This explains easily numerous observed properties 
previously described in literature. Twinning modes of the orthorhombic and the monoclinic crystal modification 
of polyethylene, which are believed to be involved, are discussed. Twinning processes observed macroscopically 
by deforming single crystals of poly(diacetylene), will be of universal importance during the deformation of 
semicrystalline polymers. 

KEY WORDS Twinning, deformation, chain orientation, yield stress, polyethylene. 

INTRODUCTION 

The deformation mechanisms in semicrystalline polymers have been extensively studied.’ *2 

Numerous models have been proposed to explain the observed orientations, however, 
their physical significance has not always been thoroughly discussed. Thus the general 
features are well understood but important details are still lacking. A plastic deformation 
is performed by shear processes. This is also valid for polymer crystals. It is difficult to 
explain the orientation of crystal lamellae whose chains are initially oriented perpendicular 
to the stress in a stretching experiment or parallel to the stress in compression experiments. 
A “rotation of crystals”, as was established from the X-ray analysis, is hardly possible. The 
result and the process should not be mixed up! Crystals in the above mentioned orientation 
do not have any imposed torque, since shear stresses (in the coplanar case, see later) are 
zero in these cases. The observation of kink suggests mechanical twinning as 
one of the underlying physical processes. During this process the chains are tilted by 
a stepwise rotation of segments within the crystals into a new crystallographic position 
(“c-twinning”). This was first proposed’ in 1976 and then experimentally observed in 
polydiacetylene single crystalss in 1978. Detailed studies of PE deformation2 still being 
explained by means of the well established (hk0)-twinning (see below) despite impressive 
observations pointing to c-twinning. Since no further investigations have been undertaken 
in this direction the matter was buried and considered as an exercise in a polymer textbook? 
Much interest has been recently displayed in the processes taking place within crystals. We 
hope that molecular modelling tools will clear this topic in the near future. 
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246 M. PIETRALLA 

FIGURE 1 The twin elements. Planes Kz ("undistorted planes") are turned to planes K; by a glide in direction 
111, determined by the simple shear s. The angle 212 of Kz with K; is the twin angle. 

TWINNING 

A twinned crystal consists of both a lattice and its mirror image. It is formally produced 
by shearing planes parallel to K1 into direction 71. K1 is the mirror plane between parent 
crystal and twin. This shear turns the planes K2 by an angle 2a to the planes Ki (see 
Figure 1). This type is a reflection twin and the process outlined produces a deformation 
twin" in contrast to widely known growth twins. In cases of restricted shear possibilities 
mechanical twinning is known to enable plastic deformation. Many of them are known to 
appear during the deformation of metals and of inorganic crystals.'0~1'~'6 

In polymers mechanical twins ((hk0)-twins) have been unambiguously observed when 
the PE bulk'* and PE single  crystal^'^^'^ are deformed. Their mirror plane, which is called 
the twinning plane K1, contains the polymer chain which is thus left undistorted. They are 
listed in Table I. The process outlined above prevents any plane intersecting the molecules 
from becoming a twinning plane, otherwise the chains must be scissored by the shear. 
The important idea is that kinked molecules can orientate stepwise if the kinking proceeds 
along the chain (Figure 2). If the molecules are arranged within a crystal in such a way 
that their kinks form a plane, named a kink block, there exist the seed of a twinned crystal. 
A collective stepwise extension of the kink block, will not remain stable but end up after 
some reshuffling in a twinned crystal. This process has been called c-twinning. The energy 
consideration leads to 

Ftwin + gtwin  I F m  +  kink, (1) 

where F is the free energy of the bulk phase, and u is the surface energy. 

PROPERTIES OF TWINNING 

Mechanical twinning is a process which proceeds by the migration of a twin boundary 
through the crystallite. The remaining parts of the crystallite shear mutually (see Figure 2). 
This minimizes the defect energy compared e.g. to the rotation of a whole crystal. A point 
lattice only needs shear for twinning (Figure 3a). A lattice with a base additionally requires 
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TWINNING IN POLYMER CRYSTAL 247 

FIGURE 2 Sketch of a possiblemechanism of c-twin nucleation. (a) Single kink within acrystal can more along 
the chain (mechanically activated). (b) The arrangement of kinks within a kink block is energetically favorable. 
(c) Extending the trans sequences results in a shear deformation of the whole crystal but increases the free energy 
of the block not being arranged in a crystal lattice. (d) Beyond a certain length of the all-trans part locking to a 
twinned crystal lattice at the expense of surface free energy is energetically favorable, compare Equation (1). 

TABLE I 
(hk0)-twinning orthorhombic 

KI K2 7)l 7)2 s 2 a  k 

(110)~ (310) pi01 [no]  0.25 14.25O 1.13 
(310)~ (110) [Do1 [iio] 0.25 14.25O 1.13 

s is the magnitude of the simple shear in the direction ql .  /c is the maximum draw ratio 
attained by twinning. The other symbols are explained in Figure 1. 

FIGURE 3 
base additionally needs reshuffling mechanisms to obtain a twinned lattice. 

(a) Simple shear of a point lattice produces a twin lattice according to Figure 1. (b) A lattice with 

reshuffling mechanisms to restore the exact orientation of the motifs within the twinned 
part (Figure 3b). The only rotation is that of local motifs. In the case of chain molecules 
these local rotations are assumed to be crankshaft-like in the first step. This means that the 
initial movement is not directed to the maximum shear stress. 
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TABLE 11 
(hk1)-twinning orthorhombic 

(110)~ (110) ~49131 [0011 1.24 63.5' 1.80 1.75 530 58.30 
(210)o (100) [lo?] [001] 1.37 68.87' 1.90 1.87 50' 56' 
(021)o (010) [0121] [Ool] 2.06 91.61' 2.47 2.47 38.6' ? 

X,a is the maximum draw ratio normal to the c-axis which is attained by these twin modes. 
@kb is the angle of a kink band with the chain axis in a crystal. @sb is the shear band angle 
with the c-axis for a crystallinity V, = 0.8 (see Figure 7). 

TABLE 111 
(hk1)-twinning monoclinic 

(201), (100) ? [001] 1.11 58.07' 1.70 1.63 55.9' 61' 
(Oll), (110) ? [001] 1.33 66.64' 1.85 1.81 51.3' 56.7' 

The meaning of the symbols is the same as in the Tables I, II. 

Twinning modes in PE determined by classical crystallography have been given in 
Reference 15. Our intention was to see how the chains might behave. Thus we obtained 
twinning modes which have not be considered in this classification on account of their high 
shear. Our results are given in Table 11. Additionally we calculated the twinning modes 
for the monoclinic crystal modification which has been observed during the deformation 
process. They are given in Table 111. The general rule that modes with the least shear are 
preferable may be modified in polymers. The chains must accommodate to both lattices, 
and the twin boundary energy must be minimized. Shears up to - 1 have been observed in 
inorganic crystals of high symmetry (s = 0.707 for Cu (fcc) and Fe (bcc), s = 0.908 for 
Ti02 (tetragonal) s = 1.066 for Mg (hexagonal))." Thus the shears of our listed twinning 
modes appear to be reasonable for the chain molecules crystalizing in low symmetry. The 
monoclinic modification has one important advantage over the orthorhombic one, i.e. all 
chains have the same setting angle. Thus, all the necessary reshuffling is the same for 
all chains contrary to the orthorhombic lattice, this evidences in favor of a transformation 
sequence orthorhombic 4 monoclinic -i c-twinning + monoclinic i orthorhombic in 
the case of c-twinning. 

Let us consider some features of such twinning processes. Of special importance was to 
know up to which draw ratio the crystal is capable to follow the macroscopic deformation. 
For this purpose we examined a sphere which transforms into an ellipsoid of equal volume.16 
The ratio of the long axis and the radius of the sphere defined the local draw ratio Ic. 

Ic = !- 2 + /(;)2 + 1. 

Since it embraced the apparent rotation of the ellipsoid, we observed the projection to the 
direction of the stress defining the macroscopic draw ratio Am=. It is 

Both are listed in the tables. 
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FIGURE 4 Orientation parameters Pz of the a-, b-, and c-axes determined by X-ray scattering.'8 The open 
symbols represent the a-axis, the filled symbols represent the b-axis. Squares are from HDPE, circles are from 
LDPE. 

0 BSERVATIONS DU RING DEFORMATIONS 

There are many peculiarities observed during the deformation of semicrystalline polymers 
which have to be explained. Let us refer to the results obtained with PE, because it is the 
most thoroughly investigated polymer. First the overall measure of crystal orientation, the 
orientation parameter P2 of the c-axis, does not follow the affine deformation scheme which 
appears for passive elements within the deforming rubber-like matrix. The orientation of 
the c-axis generally proceeds faster than affine. Whereas lower orientations compared 
to the affine one are easily explained by the appearance of a slip, the only possibility 
of higher orientations is provided by internal deformation processes of the crystals. The 
corresponding orientation parameters of the a- and b-axes are not equal like in the affine 
scheme but show a markedly different behavior,17 (see Figure 4). The same behavior has 
been observed at alternating copolymers of ethylene and fluoroethylene." 

The orientation density distribution of the crystallites c-axes reveals the most striking 
difference as compared to the affine deformation scheme. The latter develops the maximum 
in the draw direction, the experiments2v'8-m always show the maximum starting at about 
3&35", (see Figure 5) .  

There are other evidences of structural changes within the deformed polymer. The 
development of the long period shows the changing crystal thickness and distance. The 
observations of the long period are found in Reference 21. They are completed measure- 
ments of the crystal coherence dimensions in the crystallographic directions.22 The general 
features of all measurements are similar. The long period exhibits a transition behavior 
from a lamellar to a fibrillar structure at about X - 2. The main effects occur during the 
first 100% of deformation. Afterwards the long period or the crystal thickness in the chain 
direction remains more or less constant, the difference in the orientation parameters of the 
u- and b-axes decreasing. 

Unexpected data were obtained when rolling single crystal mats with chain axes per- 
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250 M. PIETRALLA 
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30 60 90 

e 
FIGURE 5 The c-axis density distribution of an uniaxially stretched PE19 (solid curve) compared to the result 
of the affine deformation (dotted curve) and a theoretical one (dashed curve), calculated with the assumption of 
(1 1 l)-twinning.7 

TABLE IV 
Sequence of (hkO)( 11 1)-twinning 

(110) 51.5’ -9.65’ 
(310) 5 3 . 5 O  1.25’ 

pendicular to the sample plane. The thickness diminished gradually whereas the crystal 
lattice rotated through a finite angle.23 Similar observations have been made by stretching 
highly oriented samples normal to the orientation axis. 

EXPLANATIONS 

We will show at least qualitatively how the most unexpected features can be explained by 
the c-twinning. 

Figure 2 provides explanation of the results ~btained.’~ The crystal lattice “rotates” 
stepwise by the twinning angle 2 a  whereas the change of the thickness follows continuously 
the transformed portion of the crystals. The unit cell rotates around the b-axis in accordance 
with the action of (201)-twinning or a sequence (1 1 l)(hkO). The latter produces the angles 
of the a- and b-axis with the plane of the sample listed in Table IV. If a crystal lamella is 
pressed along the c-axis (uniaxial rolling of single crystal mats) a sequence of twinning 
modes may appear. To illustrate it we show the angles 6,, 66 of the crystals a- and b-axis 
with the lamellar surface (plane of the sample). It is obvious that the b-axis seems to be 
a rotation axis of the unit cell. In the case of the monoclinic phase the relations are not 
known. 

A different behavior of the 0,- and b-axis orientation parameter during uniaxial drawing is 
easy to understand. The first (hk0)-twinning tends to turn the b-axis into the draw direction, 
and the a-axis perpendicular to it. The c-axis remains unchanged. (1 1 1)-twinning affects 
the a-axis less than the b-axis when orienting them perpendicular to the draw. (201)- 
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TWINNING IN POLYMER CRYSTAL 25 1 

twinning turns the a-axis Perpendicular to the draw and retains the b-axis. Thus the different 
behavior of the two axes is obvious. The final orientation is accomplished by the normal 
c-slip deformation. A more detailed analysis must incorporate different orientations of the 
unit cells prior to deformation as well as the appearance of the monoclinic modification. 

The orientation density distribution with its striking maximum at N 30” has been 
calculated already in Reference 7. One result is shown in Figure 5. The important feature 
is the non continuous “rotation” of the crystal lattice. It makes the orientation faster than 
in the case of the affine Orientation. This property has been roughly accounted for by slip 
models.24 When regarding pure numerical relations we find them to show a sufficient fit to 
the experimental data. However, note should be made that just for these slip mechanisms 
there exists no shear stress for the crystals in perpendicular orientation. 

ANISOTROPIC YIELDING 

The phenomenon of anisotropic yielding of uniaxially oriented samples was investigated 
years In this case the orientation is not random, and twinning depends on the 
relative orientation of the sample and the applied uniaxial stress. A usual criterion for the 
appearance of yielding at the stress uy is the maximum resolved shear stress T within a 
glide system which must exceed some critical value -rC. The general form is given by 

where ,f$ denotes the angle between the normal en on the glide plane and the applied stress 
(T, and ,& denotes the angle of the glide direction g with the trace of the (gem)-plane in 
the glide plane (see Figure 6a). In the mostly assumed coplanar case the directions of ert, 
g, and g lie in one plane resulting in 

rc = a,sinpcosp 

In this case the maximum shear stress acts in the 45” direction. When parallel and 
perpendicular to the applied stress, the shear stress vanishes. This poses a severe problem 
in understanding the orientation of crystals oriented normal to the draw direction. There 
is no shear and hence no torque to orient the c-axis. When considering twinning (see 
Figure 6b), we should not identify the directions g and 71. The particle displacement 
during the crankshaft motion starts into another direction than it ends, compare the bended 
arrow in Figure 6c. We regard the beginning movement of the motifs as the “shear direction” 
g. Hence, we are dealing with the general case. The angles P I ,  ,& according to Figure 6a 
are found using rotation matrices.28 The result for the critical shear stress now is 

rc = o,(asin28 + bsin2B - c) 

with the constants given by 

a = c o s ~ c o s 4 c o s ~ ~  - cosasinGsin4 

B = sinly[cosacos+(cos2\k + 1 )  - s i n 4 s i n ~ c o s ~ ]  (7) 
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252 M. PIETRALLA 

FIGURE 6 (a) A general glide system. Applying uniaxial stress (5, the maximum resolved shear stress 7 into 
the direction g within the glide plane with normal en has to be determined. it is given by Equation (4). The angles 
PI and pz are obvious. (b) The glide system proposed for c-twinning. K1 is the glide plane. The intersection 
between Kz and Ka (the rotation axis of the chains) makes an angle Q with the trace of the (oen)-plane in the 
K1-plane. The chains make angles 8 and a with the stress and the normal en of K1, respectively. (c) Projection 
of the crankshaft movement onto the glide plane K1 visualizing the meaning of the angle $. The glide direction 
is formally given by 71 but the glide slarts into the direction g which makes an angle $ with 71. 

c = cosasinacos\k. 

The meaning of the angles is obvious from Figure 6. This result differs from the equation 
used to describe the experimental observations only by lacking the constant term. Besides, 
c = 0, i.e. @ = ~ / 2 ,  means that the motion starts perpendicular to the plane spanned 
by the c-axis and the draw direction. We fitted our equation to the published results. 
Additionally a coplanar process has been added accounting for the normal slip processes. 
This combination of processes explains the observed behavior. The best fit is achieved at 
6 = 70" when accepting the crankshaft mechanism and 

when preferring twinning to slip. However, the ratio of the critical shear stresses have to 
be temperature dependent. 

FINAL REMARKS 

To follow an arbitrary deformation there must be five independent shear 
Otherwise processes like twinning, lattice transformations etc. will become active, which 
is well known from the physics of metals. Polymer crystals must follow the same general 
rules. 

Since c-twinnings have been observed in macroscopic single crystals of polydiacetylene 
they cannot be treated as simple speculations. The user of ultraoriented fibers suffers from 
the fact that the transverse yield strength is low. One reason for that is the occurrence of 
twinning, which is obvious from the anisotropic yield behavior in the above discussion. 
In single crystals this process will be reversible as long as the twin boundaries exist. It is 
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TWINNING IN POLYMER CRYSTAL 253 

FIGURE 7 (a) A twin starting within a lamella prepares it for c-slip. (b) Within a stack of Iamellae the process 
must run cooperatively, producing a shear band the angle QSb of which depends on crystallinity (see Equation (9)). 

clear that this process is compatible with any kind of fold surface. Many questions remain 
unanswered: what can be the real structure of the twin boundary which must not be the 
mirror plane, how large is the defect energy and by what molecular mechanisms the twin 
transformation takes place? Hopefully molecular modelling tools will provide some more 
insight into these problems. Calculations of (hk0)-twins have been presented in Refer- 
ence 29. Defect energies of bent single chains have been calculated using semi-empirical 
 potential^.^' The angles may be quite high and close to the twinning angles whereas the en- 
ergy is typically smaller than 1.6 kcal mol-'. Such energetically favorable angles may not 
only lead to twinning but also to general deformation kinking3' in noncrystalline polymers 
with a short range order. From Figure 8 representing twinning which may proceed within 
a stack of lamellae, it is obvious that it must be a highly cooperative process. Moreover, 
we see the occurrence of kink bands in the superstructure. Their angles depend on the 
twinning angle and crystallinity because the amorphous thickness, and thus the volume, 
have to be maintained constant. 

n- 
@&, = - -arctan 

2 (9) 

These angles are also listed in Tables 11,111. 
A c-twinning is seen to prepare the crystallites for the action of subsequent c-slip 

processes. Hence, the slip on (1 10) planes which is found to be a prominent process 
embraces (1 1 1)-twinning. Note should be made that other processes will also lead to kink 
and shear bands. In chain extended polymers however the twinning angle may be directly 
inferred from the structure kinking. The angle between chain axis and kink band should be 
given by @kb = 7 ~ / 2  - a. Indeed the statistics of kink bands in such PE samples reveals a 
broad skewed distribution of chain axes with the plane. The maximum is at 62" with a hump 
at 55" (see Reference 32). The theoretical angles of c-twinning are listed in Tables 11,111. 
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201 I 

FIGURE 8 Direct 1 1  111 depending yield stress of oriented PE. The experimental values are taken from Reference 26 
(0) and Reference 27 (0). The solid curveseare calculated for c-slip (curve 1) and for (1 11)-twinning (curve 2) 
using Equations (6) and (7). with \Ir = Oo, \Ir = 70°, and the fit parameter (8). 

We see that already the monoclinic phases reveal the same angles. The distribution and the 
skewness is due to the projection to the film plane when taking a photomicrograph. 

More indirect figures are frequently found when investigating the deformation process 
of bulk material. An interesting photomicrograph has been made by W. W ~ l f f ~ ~  at a draw 
ratio of A = 1.4. It is reproduced in Figure 9. Probably it shows a stack of lamellae in the 
first steps of destruction by c-twinning, compare Figure 8. (This figure and the deformation 
range proposed by us for the maximum number of existing twins definitely encouraged 
W. Wulff to perform this experiment.) 

RESUME 

(i) We have shown that c-twinning-the details of which still need to be elucidated-is 
a well defined crystallographic process. It is compatible with any kind of fold surface. 
Its known properties obey conventional geometrical and energetic rules. This twinning is 
probably joined to the orthorhombic-monoclinic lattice transformation. 
(ii) This process results in a gradual deformation combined with a large orientational step. 
(iii) c-twinning is active prior to the structure transformation in uniaxial stretching exper- 
iment. It covers the range of draw ratios up to X - 1.8. It tilts the chains within the 
lamellae, begins to destroy them, and brings the crystallites into orientations suited for 
c-slip (induction of micronecking and necking). 
(iv) In proper deformation experiments (e.g. shear or compression of oriented material) it 
leads to well defined kink or deformation bands. 

Despite the fact that no unambiguous direct c-twinning in PE has been observed, there 
is little doubt that this process is of general importance for any type of chain molecule. 
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TWINNING IN POLYMER CRYSTAL 255 

FIGURE 9 Kink bands in chain extended PE (courtesy of D. C. Bassett). The angles observed are compatible 
with c-twinning. 

FIGURE 10 Photomicrograph of a stack of lamellae in linear PE, with crystallinity V, = 0.82. The cooperative 
&stortion of the stack is possibly caused by twinning. The draw direction is horizontal, the draw ratio is 1.4. 
(Courtesy of W. Wulff).34 
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